
Designed for Autonomy: Remote Agent for the New Millennium Program

Douglas E. Bernard* and Barney Pell**

*Avionic Systems Engineering, Jet Propulsion Laboratory, California Institute of Technology

MS 156-235, 4800 Oak Grove Drive, Pasadena, CA, USA 91109

e-mail: douglas.e.bernard@jpl.nasa.gov

Tel: (818) 354-2597 FAX: (818) 354-1425

**Caelum Research, NASA Ames Research Center

MS 269/2, Moffett Field, CA USA 94035

e-mail: pell@ptolemy.nasa.gov

Tel: (415) 604-3361 FAX (415) 604-3594

ABSTRACT

This paper describes a new approach to spacecraft

commanding and control, called the Remote Agent. In the

Remote Agent approach, the operational rules and

constraints are encoded in the flight software, and the

software may be considered to be an autonomous “remote

agent” of the spacecraft operators in the sense that the

operators rely on the agent to achieve particular goals.

The operators do not tell the agent exactly what to do at

each instant of time. Instead, they tell the agent exactly

which goals they want achieved in a period of time and

how and when to report in.

Missions of NASA’s New Millennium Program will

mark the first use of remote agent technologies to

autonomously manage spacecraft in flight. The Remote

Agent technology is one of the highest priorities for

validation and is targeted for flight on the first New

Millennium Mission, Deep Space One, anticipated to be

launched in July, 1998.

1. INTRODUCTION

As we attempt to better understand our planet, our solar

system, and our universe, we rely increasingly on robotic

spacecraft to be our eyes and ears. These spacecraft enable

us to extend our presence into space at a fraction of the

cost and risk associated with human exploration. They

also pave the way for human exploration. Where human

exploration is desired, robotic precursors can help

identify and map candidate landing sites, find resources,

and demonstrate experimental technologies.

Current spacecraft control technology relies heavily on

a relatively large and highly skilled mission operations

team that generates detailed time-ordered sequences of

commands or macros to step the spacecraft through each

desired activity. Each sequence is carefully constructed

in such a way as to ensure that all known operational

constraints are satisfied. The autonomy of the spacecraft is

limited.

This paper describes an alternative approach to

spacecraft commanding and control, called the Remote

Agent. In the Remote Agent approach, the operational

rules and constraints are encoded in the flight software,

and the software may be considered to be an autonomous

“remote agent” of the spacecraft operators in the sense

that the operators rely on the agent to achieve particular

goals. The operators do not know the exact conditions on

the spacecraft, so they do not tell the agent exactly what

to do at each instant of time. They do, however, tell the

agent exactly which goals they want achieved in a period

of time and how and when to report in.

Missions of NASA’s New Millennium Program (NMP)

will mark the first use of remote agent technologies to

autonomously manage spacecraft in flight. The New

Millennium Program is designed to validate high-payoff,

cutting-edge technologies to enable those technologies

to become more broadly available for use on other NASA

programs. The Remote Agent technology is one of the

highest priorities for validation and is targeted for flight

on the first New Millennium Mission, Deep Space One

(DS1), anticipated to be launched in July, 1998.

On the New Millennium Program, we use the term

“Remote Agent” or RA, to refer to that portion of the

flight software responsible for interpreting high-level

goals, planning and scheduling activities to meet those

goals, and robustly executing that plan in a fault-tolerant

manner. We make use of three separate AI technologies in

building the RA: Planning and Scheduling; Smart

Executive, and Model-Based Mode Identification and

Reconfiguration.

Section 2 discusses the reasons that the spacecraft

community is interested in increasing spacecraft

autonomy. Section 3 covers aspects of the spacecraft

domain that bear on the ease of applicability of AI

technologies. Section 4 describes the requirements placed

on the remote agent for the DS1 Mission. Section 5

outlines the NMP RA design approach and architecture,

and Section 6 describes plans for future remote agent

development.

2. NEED FOR AUTONOMY ON SPACECRAFT

The desire to increase the level of spacecraft autonomy

comes from at least three separate objectives of spacecraft

customers: taking good advantage of science

opportunities, reducing spacecraft operations costs, and

ensuring robust operation in the presence of faults.

2.1. Taking Advantage of Science Opportunities

Our science customers would like the spacecraft to be

able to modify its sequence of actions more quickly based

on late-breaking information available on the spacecraft.

Several possibilities have been proposed.

An ultraviolet spectrometer on a comet flyby mission

might identify a region of particular interest for intense

scrutiny. With current technology, scientists have to

make do with whatever pre-planned sequence of

observations has been stored on-board and cannot

reprogram any of those to examine more closely the newly

identified region of interest. With the RA, plans may be

revised based on this new information hours or minutes

before flyby.

On a Mars polar orbital mission, each orbit flies over a

different ground swath due to the rotation of Mars. If one

particular site were to exhibit an interesting signature—

sought after geological resources or a beacon from a

planetary rover, it would be possible with on-board

autonomy to modify the orbit so that imaging or listening

to that site happens much sooner or more frequently than

in the original plan.

2.2. Reducing Spacecraft Operations Costs

Our funding sources are insisting that means be found

to reduce operations costs. A fixed amount of funding is

available from NASA for solar system exploration

spacecraft development and operations. When operations

costs are reduced, more resources become available for

developing a wider variety of interesting solar system

exploration missions. Analyzing operations budgets

shows that development of detailed spacecraft sequences

accounts for the largest operations expenditure.

By commanding spacecraft at a higher level of

abstraction, much of the sequence development task

becomes the responsibility of the flight software, and

ground operations costs are reduced. Some of the savings

come from a change in how we think about operations

planning. The old approach was that all spacecraft

activities needed to be predicted and approved by ground

controllers. The new thinking is that the ground

controllers do not (always) need to know the low-level

details of spacecraft activities but only the capabilities of

the spacecraft and the high-level goals.

2.3. Ensuring Robust Operation after Faults

Our customers still require high reliability and the

ability to respond to problems in flight. For existing

spacecraft, the Fault Protection system often represents

the most autonomous system on-board.

For example, the Cassini fault protection design needs

to be able to detect a fault in the prime main engine during

Saturn orbit, shut down the burn, bring the spacecraft to a

safe state, configure the redundant engine for use, allow

the system adequate cool down time, compute the

additional burn duration required to get into orbit once

the propulsion system is cool enough to use, and

schedule the continuation of the burn to commence as

soon as possible.

A point design has been developed to accomplish this

[1], but the approach required great effort and does not

generalize to other similar problems.

With the RA approach, model-based fault protection

would diagnose the problem in a principled manner, shut

down the burn and safe the spacecraft as before. But now

there is a general purpose planner on board. The RA

solves the problem by asking for a plan given the same

goals but with three extra bits of information: 1. the old

prime main engine is not usable; 2. the initial orbit has

been modified by the earlier propulsion maneuver; and 3.

the initial temperature of the propulsion system is high.

The constraints are built into an on-board planner, so a

simple request for a new plan will generate a plan that

will work, and a detailed point design is never required.

Point test cases are still important to demonstrate that the

system has the desired behavior.

Another advantage of the Remote Agent derives from

the nominal and failure modeling used by the fault

diagnosis engine. For hard-coded fault protection

designs, the domain knowledge is implicit rather than

explicit. This means that we rely on the fault protection

algorithm developers to understand the system, and

abstract from that understanding a design for which

symptoms to look for and what responses to take when

they show up. In contrast, with model-based fault

diagnosis, the fault protection software engineers

explicitly model how the system behaves in nominal and

failure cases. Fault diagnosis then becomes a search for

likely diagnoses given observed symptoms. Since the

spacecraft designers understand the details of the system

behavior at design time, there is an advantage to having

them encode their knowledge explicitly at design time.

3. SPACECRAFT DOMAIN

In designing a remote agent for a spacecraft, a number of

issues must be kept in mind that differ from earth-based

robotic applications.

3.1. Unattended Operation and Fault Tolerance

Planetary science missions may usually be described

as long periods of low-activity cruise followed by

variable duration planetary or small body encounters.

Once all systems have been checked out, nominal

(anomaly-free) spacecraft operations during cruise are

typically simple and routine. Ground controllers track

spacecraft periodically rather than continuously when

during low activity periods.

The need for unattended operation means that the

spacecraft must be highly fault tolerant. This requires an

ability to detect problems and either achieve a safe state

and wait for further instructions or diagnose the cause of

the problem and take corrective action, allowing the

spacecraft to continue operations without operator

involvement. The latter is preferred for autonomous

spacecraft.

3.2. Simple World Model

In contrast to rover applications, which may confront

unpredictable boulder fields, spacecraft have extremely

simple, predictable world models.

The trajectory is typically well understood, though it

may be necessary to model with accuracy solar radiation

pressure, time and direction of any and all thruster firings,

and atmospheric forces. The DS1 spacecraft carries a

catalogue of star orientations and planet and asteroid

ephemerides.

For the 3-axis controlled spacecraft, the spacecraft

attitude responds only to control torques and a few

environmental torques such as solar radiation torque,

atmospheric torque, and gravity gradient torque.

Propellant slosh and spacecraft flexibility can be

significant modeling challenges. Spinning spacecraft

bring additional complexity to the dynamics modeling.

The major uncertainty in the orbital and attitude

dynamics occurs when the spacecraft passes close to a

body with an atmosphere. Atmospheric density models

are of low accuracy because some of the processes are not

well understood and also because of large temporal and

spatial variations from the nominal values. Spacecraft

encounter atmospheres when flying by Earth or Venus for

a gravity assist, when using the atmosphere of Mars or

Venus to help slow the spacecraft so as to achieve

planetary orbit or to adjust the orbit. Cassini will fly

close to Titan to sample its atmosphere and perform high

resolution radar mapping.

The most difficult models to create and the ones with

the highest uncertainty are the models of the

measurements to be taken by the science experiments.

This is to be expected, and if the spacecraft do their jobs

well and accurately report sufficient information back to

scientists on Earth, then future missions will benefit from

improved models of the planetary bodies they are

studying.

3.3. Redundant Systems

Since planetary spacecraft operate for years without the

possibility of hands-on maintenance, electronic

component reliability models predict a credible

possibility that some components will fail before the end

of the mission. Depending on the length of the mission,

some functional—or sometimes block—redundancy is

likely to be part of the design. The 11 year Cassini

mission relies on block redundancy (prime plus backup

unit) for most systems to achieve sufficient mission

reliability. The DS1 mission is only two years long and

has little redundancy. Even on this mission, there are a

few instances of redundancy. The power supplies for the

transmitter are block redundant. The attitude control

thrusters are configured so that any one thruster failure

can be accommodated if diagnosed (albeit with degraded

performance). The suites of attitude control sensors

include a sun sensor, star tracker, and gyro. A safe sun-

pointed attitude can be achieved if any two of the three are

working. This approach is known as functional

redundancy.

3.4. Autonomous Subsystems

Not all autonomy needs to reside at one level. In a

number of instances, one or another component or

subsystem has a degree of autonomy, allowing the system-

level spacecraft software to interact with it at the goal

level. For example, the DS1 mission is flying an

autonomous star tracker that has its own embedded

computer. When polled, the star tracker provides a

complete attitude estimate—or an error message

indicating that no reliable estimate is currently available

and why. The complexity of attitude determination

through star field pattern matching is completely masked

from the system-level software.

3.5. Resource Management

Autonomous spacecraft will increasingly be called

upon to manage a variety of resources. These include

consumable resources such as propellant, shared

resources such as power, and renewable resources such as

battery state of charge. One important is the attitude of

the spacecraft. There are many competing demands on

spacecraft attitude including power generation (solar

panels to the sun), communications (antenna to the Earth),

and others.

3.6. Success without Autonomy

Another significant aspect of the spacecraft domain is

that current practitioners have shown spectacular success

with limited autonomy approaches, so remote agent

developers need to capture what is best about existing

practices while demonstrating the improvements that

increased autonomy enables.

4. REQUIREMENTS ON SPACECRAFT RA

For DS1, we have placed the following requirements on

the on-board RA:

• Achieve goal oriented commanding

• Generate plans based on goals and current spacecraft
state expectations

• Demonstrate model-based failure detection, isolation,
and recovery

• Avoid premature response to transient failure
indications

• Coordinate hardware states and software modes

• Determine the health state of hardware modules

• Replan after failure given new context

• Allow low-level command access to hardware

• Ensure “call-home” behavior in severe situations

5. DESIGN APPROACH AND ARCHITECTURE

Early work identified the key contributing

technologies: on-board planning and replanning, multi-

threaded smart executive, and model-based failure

diagnosis. Once these had been identified, a five-month

prototyping effort was undertaken. The New Millennium

Autonomy Architecture rapid Prototype (NewMaap)

effort is described in Ref. [2]. In NewMaap, we learned

how to take advantages of the strengths and weakness of

these three technologies and merge into a powerful

system. After successful completion of the prototype, the

RA was selected as one of the NMP technologies for DS1.

It will be uplinked to the spacecraft as a software

modification and demonstrated as an experiment.

Fig. 1 shows communications architecture for the

Remote Agent’s interaction with the rest of the spacecraft

flight software. Note that all interaction with the

hardware is the responsibility of the real-time software.

The RA is layered on top of that software, but also gathers

information from all levels to support fault diagnosis.

Real-
Time
S/W

Flight
H/W

MonitorsPlanning Experts
(incl. Navigation)

Mode ID
and

Reconfig

Mission
Manager

Smart
Executive

Planner/
Scheduler

Remote Agent

Ground
System

Figure 1: DS1 FSW Communications Architecture

Several spacecraft commanding styles are possible.

Goal-oriented commanding is the intended operating

mode for most of the mission; provision has been made for

updating the goals in flight. In a typical planning cycle,

the executive is executing a plan and gets to an activity

that can be interpreted as "time to plan the next segment."

The executive calls the mission manager with the current

and projected spacecraft state including the health of all

devices. The mission manager sends the projected state

and appropriate goals to the planner scheduler that

generates a new plan using priorities, heuristics, and

domain models. See Ref. [3]. The planner sends this plan

to the executive that creates an agenda of plan items and

executes the agenda. See Ref. [4]. Plan execution

robustness is added by making use of the Model-based

Mode Identification and Reconfiguration (MIR) system,

see Ref. [5]. The MIR system includes monitors, mode

identification for nominal and failure conditions,

communication of state to the executive and proposals of

reconfiguration actions to take in the event of failures.

The following subsections describe how the various

parts of the RA work together to achieve the desired level

of autonomy.

5.1. Periodic Planning

Our approach separates an extensive, deliberative

planning phase from the execution phase, executing

infrequently generated plans over extended time periods.

When the executive reaches the planning task in the

current planning horizon, it asks the planner to generate a

plan for the next planning horizon while it continues to

execute the activities remaining in the current plan. When

the executive reaches the end of the current horizon, the

plan for the next horizon will be ready and the executive

will then install it and continue execution seamlessly.

5.2. Planning at an abstract level

Ideally, we would like to have the planner represent the

spacecraft at the same level of detail as the executive. This

approach is taken by Bresina [6] and by Levison [7]. The

approach, when feasible, has a number of benefits. First, it

enables the planner to simulate the detailed functioning of

the executive under various conditions of uncertainty,

and to produce a plan that has contingencies (branches)

providing quick responses for important execution

outcomes. Second, it enables the use of one language

rather than two for expressing action knowledge, which

simplifies knowledge engineering and helps maintain

consistency of interfaces.

Unfortunately, in our domain this single representation

approach is not practical because the complexity of

interactions at the detailed level of execution would make

planning combinatorially intractable. Thus, we have

found it necessary to make the planner operate on a more

abstract model of the domain. Examples of abstractions

are:

–hiding details of subsystem interactions controlled by

the executive

–merging a set of detailed component states into

abstract states

– not modeling certain subsystems

–using conservative resource and timing estimates

5.3. Requesting and Executing back-to-back plans

We address the problem of generating initial states for

the next planning round differently depending on the

status of the currently-executing plan. Plans normally

include an activity to plan for the next horizon. At this

point, the executive sends to the planner the current plan

in its entirety, with annotations for the decisions that

were made so far in executing it. The current plan serves as

its own prediction of the future at the level of abstraction

required by the planner. Thus, all the planner has to do is

extend the plan to address the goals of the next planning

horizon and return the result to the executive. The

executive must then merge the extended plan with its

current representation of the existing plan. The net result

is that, from the executive's perspective, executing

multiple chained plans is virtually the same as executing

one long plan. This has the useful consequence that it

enables the executive to engage in activities that span

multiple planning horizons (such as a 3-month long

engine burn) without interrupting them.

In the event of plan failure, the executive knows how to

enter a stable state (called a standby mode) prior to

invoking the planner, from which it generates a

description of the resulting state in the abstract language

understood by the planner. Note that establishing

standby modes following plan failure is a costly activity,

as it causes us to interrupt the ongoing planned activities

and lose important opportunities.

5.4. Achieving robust plan execution

Such concerns motivate a strong desire for having

robust plans, on the one hand, and an ability to exploit

those robust plans to continue executing in the presence

of a wide variety of execution outcomes on the other hand.

Our approach achieves plan flexibility by (1) choosing

an appropriate level of abstraction for the activities and

(2) generating plans in which the activities have flexible

start and end times. By planning at an abstract level, the

planner does not worry about the details of particular

activities. This leaves the executive free to achieve the

activities in different ways depending on the current

situation. By being flexible about the start and end times

of activities, the plan will still succeed even if activities

took longer than anticipated. This also leaves room for

trying many different ways to complete a task, possibly in

the presence of failures.

In the event of hardware failures during execution, the

executive draws on the expertise of the model-based

diagnosis and reconfiguration, to diagnose the problem

and then suggest a recovery. The MIR engine,

Livingstone, uses the same device models to do the

diagnosis and to suggest recoveries that are consistent

both with the inferred current state of the spacecraft and

with the goals being maintained by the executive.

Livingstone responds to each recovery request with a

single action suggestion, and updates its diagnoses as

each suggestion is executed. If the suggested recoveries

put the system back on track with respect to the plan

within the time and resources allotted, the executive

continues executing the original plan. In the event of a

timeout, or if the system runs out of possible recoveries,

the executive abandons the current plan, enters a stable

standby mode, and requests a plan for the new situation.

6. FUTURE WORK

A number of desirable remote agent features are planned

for future remote agents that will not be part of the DS1

RA. These enhancements will further increase mission

robustness, refine diagnostic capabilities, and simplify

the process of representing and integrating knowledge

throughout the software.

In our discussion of mission robustness, we discussed

flexible planning and recovery capabilities. These

capabilities will not help in cases where some

preventative or preparatory action needed to be taken in

the past to enable recoveries in the current situation. For

example, if the primary engine breaks, the system may only

be able to switch to the backup engine if it has been

warmed up. Future remote agents will have the capability

to anticipate such possible failures, or even

opportunities, and to then build plans that provide the

necessary resources so the system is prepared for many

possible futures. A related capability in this vein is for

the executive to understand the priorities in the plan, so

that it can abandon individual tasks or threads of activity

without failing the entire plan. This will enable high-

priority activities to be completed even if low-priority

activities fail.

In our discussion of diagnosis, we pointed out that the

MIR system makes new inferences every time an action is

taken or a new observation is made. In the event of

failures, it will generate recoveries that may improve the

situation. However, sometimes these actions taken

during normal execution or even recovery will not present

the right information to isolate the fault to an optimal

level of detail. Our future work will develop methods for

active testing, in which the system will conduct tests

whose sole purpose is to help it improve its

understanding of the state of the spacecraft. Examples of

this capability include turning the spacecraft to see if a

gyro is measuring turn rates correctly, and turning

selected devices on and off to detect shorts.

In terms of knowledge engineering, we discussed how

the various reasoning engines in the RA use different

representations of knowledge. In many ways this is a

necessary and useful feature, as it allows the planner to

reason at a more abstract level than the executive, and the

diagnosis system to reason at a more detailed level.

While heterogeneous representations have a number of

benefits, they also raise some difficulties. Most

significant of these are the possibility for models to

diverge rather than converge, and the need to duplicate

knowledge representation efforts. Ideally, we would like

to head toward an increasingly unified representation of

the spacecraft, but we intend to do so always generalizing

from powerful models capable of handling the

complexities of our real-world domain.

REFERENCES

[1] G. M. Brown, D. Bernard, R. Rasmussen, “Attitude

and Articulation Control for the Cassini Spacecraft, A

Fault Tolerance Overview,” 14th AIAA/IEEE Digital

Avionics Conference, 1995.

[2] B. Pell, D. E. Bernard, S. A. Chien, E. Gat, N.

Muscettola, P. Nayak, M. D. Wagner, and B. C.

Williams, " An Autonomous Spacecraft Agent

Prototype," Proceedings of the First International

Conference on Autonomous Agents, Marina Del Rey,

CA, 1997

[3] N. Muscettola, B. Smith, C. Fry, S. Chien, K. Rajan,

G. Rabideau, and D. Yan, "On-Board Planning for

New Millennium Deep Space One Autonomy,”

Proceedings of the IEEE Aerospace Conference,

Aspen, CO, 1997.

[4] B. Pell, E. Gat, R. Keesing N. Muscettola, and B.

Smith, "Plan Execution for Autonomous Spacecraft",

Proceedings of the AAAI Fall Symposium on Plan

Execution, AAAI Press, 1996.

[5] B. Williams, P. Nayak, "A Model-based Approach to

Reactive Self-Configuring Systems," Proceedings of

the Thirteenth National Conference on Artificial

Intelligence, AAAI Press, Portland, OR, 1996.

[6] J. Bresina, W. Edgington, K. Swanson, and M.

Drummond, “Operational Closed-Loop Observation

Scheduling and Execution,” Proceedings of the AAAI

Fall Symposium on Plan Execution, AAAI Press,

1996.

[7] R. Levinson, “A general programming language for

unified planning and control,” Artificial Intelligence,

vol. 76, Special Issue on Planning and Scheduling,

1994.

